1. 首页 > 创业 > 正文

叉乘的几何意义【叉乘】

最佳答案 关于叉乘的几何意义,叉乘这个很多人还不知道,今天菲菲来为大家解答以上的问题,现在让我们一起来看看吧!1、分清点乘和叉乘点乘,也叫向......

关于叉乘的几何意义,叉乘这个很多人还不知道,今天菲菲来为大家解答以上的问题,现在让我们一起来看看吧!

1、分清点乘和叉乘点乘,也叫向量的内积、数量积。

2、顾名思义,求下来的结果是一个数。

3、 向量a·向量b=|a||b|cos 在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。

4、 叉乘,也叫向量的外积、向量积。

5、顾名思义,求下来的结果是一个向量,记这个向量为c。

6、 |向量c|=|向量a×向量b|=|a||b|sin 向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。

7、 因此 向量的外积不遵守乘法交换率,因为 向量a×向量b=-向量b×向量a 在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。

8、 将向量用坐标表示(三维向量), 若向量a=(a1,b1,c1),向量b=(a2,b2,c2), 则 向量a·向量b=a1a2+b1b2+c1c2 向量a×向量b= | i j k| |a1 b1 c1| |a2 b2 c2| =(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1) (i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。

谢谢您观看本站的内容,希望大家看完我的分享能有所收获。

本文到此分享完毕,希望对大家有所帮助。

    相关图集

标签: 叉乘

免责声明:本文由用户上传,如有侵权请联系删除!